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surfaces: an asymptotic solution 
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AbslrncL Tlic asymptotic solution Cor the Euler-Lagrange equation which describes the 
surface dcnsity prolile of liquid metals is derived. The liquid metal is modelled as 
consisting of a Fmni elcctron gas and classical onecomponent-plasma ions. These latter 
systems arc coupled via a fint-onicr electron-ion pseudopotential which is mnsidered 
lo be approprialc for characterizing liquid alkali melds. I t  is demonstrated here that 
the density prolilc can be classified as cithcr a monotonic or an orillatoty type. but our 
numerical dill:, show that  all liquid alkali metals fall into the lalter category. 

Physically, a liquid metal is a two-component system consisting of a Fermi electron 
gas and of a neutralizing system of classical ions. These systems are inextricably 
coupled via Coulombic intcractions. At the liquid-vapour interface these interacting 
Coulombic particles are highly inhomogeneous and their longitudinal single-particle 
densities wry rapidly from a uniform bulk liquid value to an extremely low-density 
value characteristic of a vapour system. A prerequisite for the quantitative under- 
standing of liquid metal surface properties is therefore a knowledge of these two 
interfacial structures. In the literature, thesc latter quantities have often been ob- 
tained from two indcpendcnt sources. On the one hand, the dense inhomogeneous 
quantum electron gas is customarily handled by variants of the non-linear, density 
functional formalism of Hohcnberg-Kohn-Sham [I]. The ion interfacial structure, on  
the other hand, can be approached in t%'o different ways: one can either extract infor- 
mation about the ionic dcnsity profile indirectly from experiments which encompass 
small angular x-ray reflcctivity [2, 31, grazing incidence x-ray diffraction [U] and high 
energy electron diffraction [7], or from computer simulation [ S ]  provided one is given 
a means to construct a total energy exprcssion. The usefulness and the limitations of 
both techniques of obtaining valuable information on the ion density distribution have 
been discuss rather thoroughly in a rccent review article by JA 191. One interesting 
feature that emerges from these experimental and computer simulation studies is that 
the ion density profile shows oscillatory behaviour at the liquid-vapour interface. The 
results of these investigations have subsequently simulated theoretical work [lo] and, 
over the years, have bccn takcn as a guidance for theoretical modelling of the density 
profile in the variational thermodynamic calculation of surface properties such as the 
liquid metal surface tension [II-131. Many of the theoretical works that focus on 
the calculation of the surface tension for liquid metals, to our knowledge, have been 
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influenced very much by these findings and have thus proceeded with an assumed 
oscillatory behaviour in a rather arbitrary and parametrized form for the one-particle 
density profile without any theoretical justification. A question then arises: can we 
theoretically provide more evidence as to the existence of such oscillatory behaviour? 
In this paper, we attempt to look at this question. 

TO make matters simple and yet to keep the physical content in as transparent 
a form as we could, we follow the pioneering first-order density functional theoly 
of Evans and Hasegawa [ 141. It should be noted that although the first-order per- 
turbation theory certainly cannot give an accurate account of the energetics such as 
the first-order calculations 114-161 (see also the recent work by Hasegawa Ill]) for 
the surface tension of liquid metals, it surely can give a fairly good description for 
the long-wavelength density fluctuation near equilibrium bulk liquid density [14, 171 
where successful calculation of the bulk modulus or the longwavelength structure 
factor [17] was already reported. Sincc we will be primarily interested h the asymp- 
totic behaviour near the bulk liquid side, we cxpect first-order perturbation theory to 
be sufficient for this purpose. 

Assuming that thc inhomogeneous electron-ion coupling is weak, Evans and 
Hasegawa showed that the total grand potential for the two-component system is 

W P ,  nl = Gib] + C,I?ll+ 4 J d r  dr)[74r) - zdr) - / d r  P ( T )  
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- P e  / d r  ?i(r) + J J d r ’ p ( r ) n ( r ’ ) w ( l r  -r’l) (1) 

where 2 is the nominal valcnce of an ion, n ( r ) ( p ( r ) )  is the single-particle density, 
G, (GJ is a unique futictional of the electronic (ionic) density representing the non- 
Coulombic contribution to the intrinsic Cree energy of the electronic (ionic) system, 
f ie  (pi) is the chemical potential for the electronic (ionic) system, p ( r )  is given by 

being the electrostatic potential and 20 is the non-Coulombic part of a pseudopotential 
up’ defined by 

up”( P) = w( v )  - Z / r .  (3) 

’Ib proceed, we note that since w( P) describes a repulsive short-ranged part of up8( r) 
we may approximatc thc last term in cquation (1) as 

J J  d r  d r ’  , Y ( T ) ? L ( ~ ) W ( ~ T  - ?’I) = J d r  p(r)n(r)ZLI(O) (4) 

where the tilde mcans a Fourier transform. Following Evans and Hasegawa [14], we 
use the square-gradient approximation for the first and second terms in equation (I), 
i.e., we write 
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It should be noted here that the use of the square-gradient approximation is justified 
for the electron gas [IS] and also for the one-component plasma (OCP) system [19]. 

Equations (1)-(6) form the basis of the present analysis. Now, in order to obtain 
the precise form of the density profile of the surface we have to solve the Euler- 
Lagrange equations [ 10, 191 which are given by 

B E n g  the z-axis to be the normal to the planar liquid surface and inserting equa- 
tions (5) and (6) into equations (7) and (S), we have, after rearranging 

where the prime in each g rcfers to differentiation with respect to the n or p. Note 
that equations (9) and (10) are coupled differential equations for R and p. These 
one-particle densities arc also coupled through Poisson's equation 

Further progress can be made if we can calculate the chemical potentials for electrons 
and ions. 'lb this end, we must consider the free energy density, f ,  of a uniform 
system. Within first-order perturbation theory it can be shown [I41 that 

f = s . ~ ( P )  + g e ( n )  + 9 w X O )  (12) 
which allows us to calculate the pi and pe from the formulae 

where nl and pf are the equilibrium densities in a bulk liquid phase and are related 
by nl = Zpl. The above cxprcssions for chemical potentials can be substituted back 
into equations (9) and (10) and we arrive at 
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We are now in a position to derive the asymptotic behaviour of single-particle 
densities following the procedure given in [lo] and 1191. In the first place, we note 
that near the bulk liquid region we expect the density profiles to be close to the bulk 
density. Introducing m ( z )  = n ( z ) - n !  and U ( % )  = p(z)-p, ,  these linearized forms 
for m ( z )  and U(.) can be used to cast equations (15) and (16) into 

(17) 
d ’u(s)  

2 g , , ( P l ) T - 9 : ” 4 . )  + Ztp(.)- m(.).ui(O) = a 

= -4n[na(z) - Z U ( P ) ]  
d zz 

which are now a set of coupled linear equations. At this point it is trivial to solve 
these equations by applying the standard procedure. If we introduce the following 
variables y,(z) = ? ? I ( : ) ,  u ? ( z )  = U ( : )  and y3(z) = ~ ( z ) ,  equations (17)-(19) can 
be written in a matrix form 

d2y Ay. 
dz?  - 

where the matrix A is givcn by 

d t I ) /( %e?( 72, )) G(0 ) /(%( ni 1) 1 /(29,2( 12,) 1 
A =  ( ~ ~ ( O ) / ( % ( P I ) )  g:’(P,)/(%,*(P,)) - Z / ( % , ( P t ) )  

-4 lr 4 x 2  0 

It  is easily Seen that the solution to equation (20) is of the form 

y = yoeo‘ (21) 

where yo should be fixed by the initial condition. Here a can be determined through 
the eigenvalue equation 

det (A  - n’l) = 0 (22) 

and the sign of the solutions f J m ?  has to be chosen to satisfy the appropriate 
boundary condition. Denoting I = a?, this secular equation (22) can be expanded 
to read 
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and in equation (26) wc.have simplified the expression by the isothermal compress- 
ibility, xT, defined by 

(27) 
-1 - 2 I ,  

XT - Pigi ( P i )  + n f g i ( n i )  + 2 ~ ~ f P l ~ i r ( o ) .  

At this stage, it is appropriate to emphasize two relevant points. Firstly, because 
X T , g e a ( n f )  and gi2(pf) arc positive definite, c is negative definite leading to at least 
one of the solutions of cquation (23) being real and positive, a: say. Secondly, we 
see from equation (23) that thc asymptotic forms for m ( z ) , ~ ( r )  and ' p ( z )  all obey 
the same single diffcrcntial equation given by 

d6y d4y d 2 y  
- + U -  + 6- + C  = 0 
d z 6  d-4 dz? 

in which y( z )  = m( z ) ,  a( z )  or 'p( 2). Because of this property, the asymptotic forms 
of p, n and 'p should scparately have the same Cunctional form 

y(z) - Ae"" + Bc"'l' + Cco3'. (29) 

in which A, €3 and C are constants and should be determined separately for p ,  n and 
' p i n  order to satisfy thc boundary condition that thcy va'y smoothly to match exactly 
the density profiles around [he surracc [ IY] .  The values a2 and a3 should shed light 
on the detailed behaviour or the density profiles. To make a further analysis, we 
therefore return to cqution (23). This cubic equation has solutions dependent on 
the discriminant 

A = 4  ( b - -  a3?)3 + 2 7  ( c - - + -  ab 2 0 ~ ) '  . 
3 27 

Bearing in mind the one real solution mentioned above, the other two possible 
solutions a: and a: dcpcnd on the sign of A. When A > 0 we have both solutions 
complex, corresponding to a damped oscillation supcrimposed on the real solution 
e x p [ a t  21, giving 

y(z) - A c ' / ~ I  + B'e'/La cos(r /X + C'). (31) 

In equation (31) €3' and C' are new constants and we have chosen signs for ai such 
that the boundary condition ~ ( z )  -+ 0 as z -. --CO is satisfied, that is, we write 

a,  = 1 / L ,  

a2 = [1/L, + i/X] 

a3 = [ I / &  - i / X ] .  

and from the famous Cardano's formulae 

+ B ' l 3  U - - _ _  + 
3 (35) 
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with 
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- - - - 
0 -  - - 

I I I I I I I I I I I I I I I I I I I I 1 1 1 1  
- 

-1 +id 
w =  

2 

On the other hand. whcn A < 0, we have two additional real solutions, which 
describe monotonic bchaviour. Wc stms, in particular, that a negative real solution 
is unphysical as this chnractcrizcs infinitc oscillations and the equilibrium value of 
the density is never rccovcrcd. This latter solution should thcrcforc be discarded. 
Accordingly, the question of whcthcr or not an oscillatory behaviour of the density 
profile will exist depends crucially on the value of A. 'Ib make our discussion more 
concrete, we present in figure 1 our numerical data of the decayed lengths L, and 
L, as well as the wavclcnbth of oscillation 2xX for five liquid alkali metals Li, 
Na, K, Rb and Cs. Thcsc numerical estimates are calculated using the empty core 
pseudopotential with thc core radius of each metal chosen to give the observed 
equilibrium value. within first-ordcr thcory [12]. We first summarize several interesting 
points: 

(i) For all liquid alkali mctals, our present thcory yields A > 0 and oscillatoIy 
density profiles arc thus prcdictcd in accordance with indirect experiments 13, 71 and 
computer simulations 18, U)]. 
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(ii) The oscillation for low density materials (in the present case liquid Cs) appears 
to be stronger than that for the higher density metals (in the present case liquid Li) 
as implied from the general trend of our work and the works of Lang and Kohn [21], 
Allen and Rice [22] and Hasegawa Ill]. 

(ii) Since the density profiles for both the electrons and ions are similar but in 
general not the same, we have here an incomplete overlap of the electron and ion 
particle densities, a feature consistent with the existence of a double layer at the 
liquid-vapour interface. 

(iv) The origin of these oscillatory behaviours derives from the electrostatic term 
‘p as can be readily shown by examining its effect (ignoring in equations (7) and 
(8) and proceeding as in text) on the solutions. 

It is thus obvious that an oscillatory behaviour of electrons and ions at the liquid- 
vapour interface is a common feature for liquid metals. We further note that the 
wavelength of oscillation ? T A  given in figure 1 when examined against density (from 
Li to Cs) is approximately $n/liF. This ditfcrs somewhat from that wavelength of 
the Friedel oscillation 

A /ICF c 1 .6rs (41) 

which was found by Lang and Kohn [21] (see table 1 in [21]) to exhibit a density 
dependence of oscillation for the electronic density profile calculated in the context of 
the KohnSham-type cquntiun. The correlation between 2nX and n / k p ,  however, is 
merely a fortuitous coincidciice and the interpretation of the oscillation arising from 
the Friedel oscillation may not be correct. We stress again that not only electronic 
density but also the ionic density and the electrostatic potential follow the same 
functional form, that is, 

y(z) - Ae’IL1 + B‘e’/L’ cos(GkFz + C’) (42) 

where use is made of the relation 27rA = $n/kF in equation (31). Furthermore, 
except for the very special casc when R’ = 0, which seems very unlikely, we always 
have the oscillating profile. 

Finally, we comment fiirther on the qualitative behaviours of the decayed lengths 
L, and L, as well as on thc wavelength of oscillation 2aX. First, we approximate 
a - b - 0, and, by virtue of equations (26) and (27), express ai in equations (35)-(37) 
by the observable xT, being the isothermal compressibility. Then, it is straightfonvard 
to show that 

~1 = )Qiz( / ~ 1 ” ~  (43) 

L, = ~[~ilSTD~z(~~,)Qi?(Pl)/nl”6 = 2Ll (44) 

(45) 2 5 r ~  = - [ ( ~ i ~ T ~ ~ 2 ( n i ) ~ i ? ( p i ) / n 1 ” ~  = --L 4 4 ’  
47r 7 4n 

a form which bears a close rcsemblance to the bulk correlation length E which is 
defined for a one-component classical fluid to be [23] 

E = [pfxTK]”? (46) 
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where K is the squarc-gradient coelficicnt of the free energy density. This latter 
equation has been frcqucntly used in cxplaining the narrowness of the surface width. 
Note that equation (44) is different from that found in symmetric molten salts [24]. 
For example, we have hcrc determined an exponent 1/6 in equation (44) whereas 
symmetric molten salts [24] yield ID. The reasons are due, firstly, to the fact that 
in the latter case, the clcctrostatic potential vanishes identically because of symmetry 
and, secondly, to the fact that only one equation which describes the total density 
variation survives among the three coupled Euler-Lagrange equations. The second 
point in particular is contrary to the present calculation where we retain the elec- 
trostatic coupling and solvc the thrce equations together. A simple analogy is thus 
inappropriate. 
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